An E.S.R. Study of the Photochemistry of Zirconocene(1v) Alkyls and C h lo ridest

Andrew Hudson, Michael F. Lappert, and Roger Pichon

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN7 9QJ, U.K.

Low temperature photolysis in PhMe or MeC $_6H_{11}$ of various zirconocene(iv) alkyls, aryls, chlorides, cyclopentadienyls, or hydrides $[Zr(\eta-C_5H_5)_2(R)X]$ leads to the e.s.r. characterisation of a number of Zr^{III} complexes: $[\text{Zr}(\eta - C_5H_5)_2R]$ (1) and $[\text{Zr}(\eta - C_5H_5)R_2]$ as well as their phosphine adducts, $[\text{Zr}(\eta - C_5H_5)_2C]$, and a Zr^{III} hydride (2); the primary photo-products from $[Zr(\eta-C_5H_5)_2R_2]$ (*e.g.,* R = CH₂Ph) are (1) and **R.,** with (2) derived from **(I)** by a dark reaction.

Little is known about the photochemical behaviour of organozirconium(1v) compounds, especially with respect to their reduction to $Zr^{III,1,2}$ We now report results on $[Zr(\eta-C_5H_5)_2R_2]$ (R = Ph, C_6H_4Me -p, CH₂Ph, or CH₂SiMe₃) (see Scheme 1) and $[Zr(\eta-C_5H_5)_2Cl(X)]$ (X = η -C₅H₅, Cl, H, or Me) (see Scheme 2). A feature of this work is the characterisation of a number of organozirconium(III) species (1)-(4), and phosphine adducts **(la)** and **(3a);** such complexes are exceedingly rare.²

Photolysis (Pyrex-filtered light from a 1 kW high-pressure Hg-Xe lamp) of $[Zr(\eta-C_5H_5)_2Ph_2]$ in toluene, deoxygenated and sealed in a quartz tube under argon, at ambient temperature gave an e.s.r. spectrum consisting of a **6.6 G** doublet centred at $g = 1.987$. On turning off the light, the doublet first increased slightly in intensity and then slowly decreased. Very similar results were obtained with $[Zr(\eta-C_5H_5)_2(C_6H_4Me-p)_2]$.

At room temperature photolysis of $[Zr(\eta-C_5H_5)_2(CH_2Ph)_2]$ yielded a broad signal which resolved into a doublet when the irradiation was stopped. The signal observed during photolysis at -50 °C could be analysed in terms of doublet ($a =$ $6.6G$, $g_{av} = 1.987$) which overlapped a 1:2:1 triplet $(a, ca, 3G)$. The latter exhibited 91Zr satellites with a separation of **23.5** *G.* When the experiment was repeated at -85 °C these signals became broad and poorly resolved but we were then able to characterise the spectrum of the benzyl radical.

A more complicated picture emerges from the photolysis of $[Zr(\eta - C_5H_5)_2(CH_2SiMe_3)_2]$ but at -90 °C we successfully detected the transient \cdot CH₂SiMe₃. At -48 °C, in addition to broad signals, we observed what is probably a quintet $[a^{\text{(1)}}] = 2.4 \text{ G}$, which we assign as **(3)** $(R = CH_2 \text{SiMe}_3)$. At higher temperatures it was possible to identify a doublet identical with that found in the other systems.

These results provide strong evidence that the principal primary photolytic process is metal-carbon bond homolysis in $[Zr(\eta - C_5H_5)_2R_2]$ to yield the Zr^{111} complex **(1)** and R^* (Scheme

t No **reprints** available.

Scheme 1. Paramagnetic zirconium(III) complexes (1)-(3), and tertiary phosphine adducts (1a) and (3a), from photolysis of dialkyl- or diphenyl-zirconocene(iv), $[Zr(\eta-C_5H_5)_2R_2]$. The following e.s.r. parameters $[g_{av}, a(^{91}Zr)$, and $a(^{1}H)$ or $a(^{31}P)$ in G, respectively] were
recorded: (1) (1.979, 23.5, ca. 3); (2) [1.987, $a(^{91}Zr)$ not observed, $(3a)$ $[1.996, 23.2, a⁽³¹P) 19.5].$

1). It is particularly significant that in two cases $(R =$ $CH₂SiMe₃$ or $CH₂Ph$) we have been able directly to detect these transient species, since previous work has relied either on spin-trapping merely to establish the presence of \mathbb{R}^{1} or CIDNP³ (for $R = Me$). The spectra of complexes (1), exhibiting ^{91}Zr satellites, are typical of $Zr^{III,2,4}$

The structure of the species **(2)** giving rise to the 6.6 G doublet is more problematical. The same spectrum was observed in all four systems. A similar doublet $(a = 7.0 \text{ G})$ has been detected in the photolysis of $[\text{Zr}(\eta - C_5H_5)_2 \text{Me}_2]$.¹ The doublet splitting in **(2)** must be due to a single proton and it seems likely that it originates from the $-C_5H_5$ ligand. We have obtained the same spectrum from either $[Zr(\eta-C_5H_5)_2(C_6D_5)_2]$ in toluene or $[Zr(\eta - C_5H_5)_2Ph_2]$ in perdeuteriotoluene but have yet to perform an experiment with a $-C_5D_5$ ligand. Complex **(2)** seems to be formed by a thermal reaction since the spectrum grows in intensity on ceasing irradiation and its precursor may be a transient $[Zr(\eta-C_5H_5)_2]$.¹ (Evidence for such a transient molecule comes from trapping experiments, *e.g.*, with $C_4H_6^2$.

Our failure to detect 91Zr satellites for the hydride **(2)** is curious, because they are readily detectable for other Zr^{III} complexes. This may indicate the presence of a dimer or polymer, since these would be expected to tumble more slowly in solution than a monomer and hence have broader satellite lines.

A dinuclear hydride might arise through either (σ, π) - $C_5H_4^{2-}$ or $(\pi,\pi)-\tilde{C}_5H_4-C_5H_4$ bridging [transformations $2M(\eta^5-C_5H_5) \rightarrow M(\eta^5, \eta^1-C_5H_4)_2M$ or $M(\eta^5; \eta^5-C_{10}H_8)M$ are recognised as an important facet of low oxidation state organotransition metal chemistry⁵]. Such a ligand might in turn derive from an initial α -elimination as shown in equation **(1)** (which has a precedent in titanocene chemistrye). Alternative formulations of the hydride **(2)** are then **(2'), (2"),** or **(2"');** the latter two being formed from **(1)** and either $[Zr(\eta - C_5H_5)_2R_2]$ or (with loss of RH) $Zr(\eta - C_5H_5)_2$, respectively. [We thank a referee for suggesting structures (2") and $(2''')$.]

In order to stabilise the Zr^{III} intermediates formed during photolysis of $[Zr(\eta-C_5H_5)_2R_2]$ we have performed a number of experiments in the presence of an added tertiary phosphine. Thus when $[Zr(\eta - C_5H_5)_2Ph_2]$ is irradiated at -64 °C with PPh, present, we see, in addition to the 'hydride' doublet, a second larger doublet with ⁹¹Zr satellites which we assign to $[Zr(\eta - C_5H_5)_2(Ph)(PPh_3)]$, **(1a)**, $(R = Ph = R'$ in Scheme 1). When the PPh₃ is replaced by PE t_3 , two doublets are observed. One is assigned to $[Zr(\eta - C_5H_5)_2(Ph)(PEt_3)]$, **(1a, R** = Ph, $R' = Et$). The second, which is the more stable at higher temperatures, is also formed by leaving the solution at room temperature and is probably $(3a, R = Ph, R' = Et)$. Species related to **(la)** have been detected from the other compounds when it is also possible to resolve hyperfine structure for the

$$
12r(\eta - C_5H_5)_{2}Cl(R) = \frac{6x \cosh 3p \cosh 3p}{-50 \text{ °C}} \left[2r(\eta - C_5H_5)_{2}Cl_{2}\right]
$$

\n
$$
-40 \text{ °C} \text{ h}\nu
$$

\n
$$
C_5H_5
$$

\n
$$
12r(\eta - C_5H_5)_{2}Cl(R) = \frac{h\nu R = H \text{ or Me.}}{20 \text{ or } -50 \text{ °C}} \left[2r(\eta - C_5H_5)_{2}Cl\right]
$$

\n
$$
= \frac{h\nu}{-50 \text{ °C}} \left[2r(\eta - C_5H_5)_{3}Cl\right]
$$

\n
$$
= \frac{h\nu}{-50 \text{ °C}} \left[2r(\eta - C_5H_5)_{3}Cl\right]
$$

\n
$$
= \frac{h\nu}{-50 \text{ °C}} \left[2r(\eta - C_5H_5)_{3}Cl\right]
$$

\n
$$
= \frac{h\nu}{-50 \text{ °C}} \left[2r(\eta - C_5H_5)_{3}Cl\right]
$$

\n
$$
= \frac{40 \text{ °C}}{100 \text{ °C}} \left[2r(\eta - C_5H_5)_{3}Cl\right]
$$

Scheme 2. A paramagnetic zirconium(III) complex (4) from photolysis in PhMe of zirconocene(Iv) chlorides.

methylene protons of the ligands $\overline{C}H_2P$ h or $\overline{C}H_2S$ iMe₃. Thus for $[Zr(\eta - C_5H_5)_2(CH_2Ph)(PPh_3)]$ we find $a(^{31}P) = 20.7 G$, $a(H) = 4 G$, $a(^{91}Zr) = 16.5 G$, $g_{av} = 1.984$ and for $\left[Zr(\eta) - C_5H_5 \right]_2 (CH_2SiMe_3) (PEt_3)$]: $a^{(31P)} = 19.2$ G, $a^{(1H)} =$ $4.6 \text{ G}, a^{0.1}Zr$ = 19.9 G, g_{av} = 1.988. These coupling constants are similar to those recently reported for other Zr^{III} phosphine complexes.

The above results are summarised in Scheme 1.

We have also investigated the photolysis of the compounds $[Zr(\eta-C_5H_5)_2Cl(R)]$, Scheme 2. When R = H or Me, the e.s.r. signals consist of a singlet $(g_{av} = 1.980)$ with satellites, $a(^{91}Zr) = 40.3$ G. This species has a half-life of about 1 min at room temperature and is unaffected by the presence of added tertiary phosphine. The same spectrum, which we assign to $[\text{Zr}(\eta - C_5H_5)_2\text{Cl}]$, (4), has been obtained during the photolysis of $[Zr(\eta - C_5H_5)_3Cl]$. A similar singlet was also observed from [$Zr(Ar)(\eta - C_5H_5)_2Cl$] (Ar = $C_6H_2Bu_{3}t_{3}t_{3}t_{4}$, along with the characteristic sextet of ${}^{+}C_{5}H_{5}$. The cyclopentadienyl radical was also detectable on photolysis of $[Zr(\eta-C_5H_5)_2Cl_2]$ in toluene; this result may have a bearing on reports of photolysis of the dichloride in presence of (a) Bu^tCl {to give $[Zr(\eta - C_5H_5) Cl_3$]⁸ and (b) $[Zr(\eta-C_5D_5)_2Cl_2]$ {to give an equilibrium mixture containing $[Zr(\eta - C_5H_5)(\eta - C_5D_5)Cl_2]$.⁹

We thank the C.N.R.S. for granting study leave to R.P., and N.A.T.O. for support.

Received, 16th December 2982; Cum. 1442

References

- 1 E. Samuel, P. Maillard, and C. Giannotti, *f. Organomet. Chem.,* **1977, 142, 289.**
- **2** *Cf.,* D. J. Cardin, M. **F.** Lappert, C. L. Raston, **and** P. **1.** Riley, in 'Comprehensive Organometallic Chemistry,' eds. G. Wilkinson, F. G. **A.** Stone, and **E.** W. **Abel,** Pergamon Press, Oxford, **1982,** Vol. 3, pp. **567** and **606-609.**
- 3 P. W. N. M. van Leeuwen, H. van der Heijden, C. F. Roobeek, and J. H. G. Frijns, J. *Organomet. Chem.,* **1981, 209, 169.**
- 4 M. **F.** Lappert, C. J. Pickett, P. I. Riley, and P. **1.** W. Yarrow, *f. Chem. Sue., Dalton Trans.,* **1981, 805.**
- *5 Cf.,* E. C. Baker, K. N. Raymond, T. **J.** Marks, and W. **A.** Wachter, J. *Am. Chem. SOC.,* **1974, 96, 7586.**
- **6 H.** H. Brintzinger and J. **E.** Bercaw, *f. Am. Chem. Sue.,* **1970, 92, 6182.**
- **⁷**N. E. Schore and H. Hope, J. *Am. Chem.* **SOC., 1980,102,4251** ; G. M. Williams and J. Schwartz, *ihid.,* **1982, 104, 1122.**
- 8 N. J. Wells, J. C. Huffman, and K. G. Caulton, J. Organomet. *Chem.,* **1981, 213,** C17.
- **9** M. H. Peng and C. H. Brubaker, J. *Organomet. Chem.,* **1977, 135,** *333.*